4 resultados para drug discovery

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endospore-forming bacteria are often isolated from different marine sponges, but their abundance varies, and they are frequently missed by culture-independent studies. Within endospore-formers, Bacillus are renowned for the production of antimicrobials and other compounds of medical and industrial importance. Although this group has been well studied in many different environments, very little is known about the actual diversity and properties of sporeformers associated with marine sponges. Identification of the endospore-forming bacteria associated with the marine sponges; Haliclona simulans, Amphilectus fucorum and Cliona celata, has uncovered an abundant and diverse microbial population composed of Bacillus, Paenibacillus, Solibacillus, Halobacillus and Viridibacillus species. This diversity appears to be overlooked by other non-targeted approaches where spore-formers are masked by more dominant species within the ecosystem. In addition to the identification of two antibiotic resistant plasmids, this bank of sporeformers produce a range of bioactive compounds. New antimicrobial compounds are urgently needed to combat the spread of multidrug resistant pathogens, as few new options are entering the drug discovery pipelines for clinical trials. Based on the results of this project, endospore-formers associated with marine sponges may hold the answer. The power of coupling functional based assays with genomic approaches has enabled us to identify a novel class 1 lantibiotic, subtilomycin, which is active against several clinically relevant pathogens. Subtilomycin is encoded in the genomes of all the marine sponge B. subtilis isolates analysed. They cluster together phylogenetically and form a distinct group from other sequenced B. subtilis strains. Regardless of its potential clinical relevance, subtilomycin may be providing these strains with a specific competitive advantage(s) within the stringent confines of the marine sponge environment. This work has outlined the industrial and biotechnological potential of marine sponge endospore-formers which appear to produce a cocktail of bioactive compounds. Genome sequencing of specific marine sponge isolates highlighted the importance of mining extreme environments and habitats for new lead compounds with potential therapeutic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is split into three sections based on three different areas of research. In the first section, investigations into the α-alkylation of ketones using a novel chiral auxiliary is reported. This chiral auxiliary was synthesised containing a pyrrolidine ring in the chiral arm and was applied in the preparation of α-alkylated ketones which were obtained in up to 92% ee and up to 63% yield over two steps. Both 3-pentanone and propiophenone based ketones were used in the investigation with a variety of both alkyl and benzyl based electrophiles. The novel chiral auxiliary was also successful when applied to Michael and aldol reactions. A diamine precursor en route to the chiral auxiliary was also applied as an organocatalyst in a Michael reaction, with the product obtained in excellent enantioselectivity. In the second section, investigations into potential anti-quorum sensing molecules are reported. The bacteria Pseudomonas aeruginosa is an antibiotic-resistant pathogen that demonstrates cooperative behaviours and communicates using small chemical molecules in a process termed quorum sensing. A variety of C-3 analogues of the quorum sensing molecules used by P. aeruginosa were synthesised. Expanding upon previous research within the group, investigations were carried out into alternative protecting group strategies of 2-heptyl-4-(1H)- quinolone with the aim of improving the yields of products of cross-coupling reactions. In the third section, investigations into fluorination and trifluoromethylation of 2-pyrones, pyridones and quinolones is reported. The incorporation of a fluorine atom or a trifluoromethyl group into a molecule is important in pharmaceutical drug discovery programmes as it can lead to increased lipophilicity and bioavailability, however late-stage incorporation is rarely reported. Both direct fluorination and trifluoromethylation were attempted. Eight trifluoromethylated 2-pyrones, five trifluoromethylated 2-pyridones and a trifluoromethylated 2-quinolone were obtained in a late-stage synthesis from their respective iodinated precursors using methyl fluorosulfonyldifluoroacetate as a trifluoromethylating reagent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis outlines the synthetic chemistry involved in the preparation of a range of novel indazole compounds and details the subsequent investigation into their potential as biologically active agents. The synthetic route utilised in this research to form the indazole structure was the [3+2] dipolar cycloaddition of diazo carbonyl compounds with reactive aryne intermediates generated in situ. The preparation of further novel indazole derivatives containing different functional groups and substituents was performed by synthesising alternative 1,3- dipole and dipolarophile analogues and provided additionally diverse compounds. Further derivatisation of the indazole product was made possible by deacylation and alkylation methods. Transformation reactions were performed on alkenecontaining ester side chains to provide novel epoxide, aldehyde and tertiary amine derivatives. The first chapter is a review of the literature beginning with a short overview on the structure, reactivity and common synthetic routes to diazo carbonyl derivatives. More attention is given to the use of diazo compounds as 1,3-dipoles in cycloaddition reactions or where the diazo group is incorporated into the final product. A review of the interesting background, structure and reactivity of aryne intermediates is also presented. In addition, some common syntheses of indazole compounds are presented as well as a brief discussion on the importance of indazole compounds as therapeutic agents. The second chapter discusses the synthetic routes employed towards the synthesis of the range of indazoles. Initially, the syntheses of the diazo carbonyl and aryne precursors are described. Next, the synthetic methods to prepare the indazole compounds are provided followed by discussion on derivatisation of the indazole compounds including N-deacylation, N-benzylation and ester side-chain transformation of some alkene-containing indazoles. A series of novel indazole derivatives were submitted for anti-cancer screening at the U.S National Cancer Institute (NCI). A number of these derivatives were identified as hit compounds, with excellent growth inhibition. The results obtained from biological evaluation from the NCI are provided with further results pending from the Community for Open Antimicrobial Drug Discovery. The third chapter details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ellipticine is a natural product which possesses multimodal anti-cancer activity. This thesis encompasses the synthesis and biological evaluation of novel ellipticine and isoellipticine derivatives as anti-cancer agents. Expanding on previous work within the group utilising vinylmagnesium bromide, derivatisation of the C5 position of ellipticine was accomplished by reaction of a key ketolactam intermediate with Grignard reagents. Corresponding attempts to introduce diverse substitution at the C11 position were unsuccessful, although one novel C11 derivative was produced using an alkyllithium reagent. A panel of novel ellipticinium salts encompassing a range of substitutions at the N2, C9 and N6 positions were prepared. Extensive derivatisation of the N10 position of isoellipticine was undertaken for the first time. Novel substitution in the form of acid and methyl ester functionalities were introduced at the C7 position of isoellipticine while novel C7 aldehyde and alcohol derivatives were synthesised. A large panel of isoellipticinium salts were prepared with conditions adjusted for the reactivity of the alkyl halide. Novel coupling reactions to increase the yield of isoellipticine were attempted but proved unsuccessful. A panel of 54 novel derivatives was prepared and a multimodal analysis of their anti-cancer activity was conducted. The NCI 60-human tumour cell lines screen was a primary source of information on the in vitro activity of compounds with derivatives found to exert potent anticancer effects, with mean GI50 values as low as 1.01 μM across the full range of cancer types and as low as 16 nM in individual cell lines. A second in vitro screen in collaboration with researchers in the University of Nantes identified derivatives which could potently inhibit growth in a p53 mutant NSCLC cell line. The cell cycle effects of a selected panel of isoellipticines were studied in leukaemia cell lines by researchers in the Department of Biochemistry and Cell Biology, UCC. Emerging from this, the therapeutic potential of one of the derivatives in AML was then assessed in vivo in an AML xenograft mouse model, with tumour weight reduced by a factor of 7 in treated mice relative to control.